
OPENCL
ECOSYSTEM

UPDATES
Developer UX at the forefront

07/05/2022 GPU-Day 2022 – Budapest, Hungary 1

STREA
M
High Performance
Computing

07/05/2022 GPU-Day 2022 – Budapest, Hungary 2

TABLE OF CONTENTS

1ST PARTY OPENCL-SDK
Where it all begins

07/05/2022 GPU-Day 2022 – Budapest, Hungary 3

STREA
M
High Performance
Computing

• Re-imagination of the API

• Builds on top of the last widely adopted version, 1.2

• Adopts the Vulkan-like „slim core API with everything else
extensions” approach

• Lowers the bar for adoption

• Newcomers
• Solves issues for existing

adopters

OPENCL 3.0

07/05/2022 GPU-Day 2022 – Budapest, Hungary 4

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

STREA
M
High Performance
Computing

• New ICD Layers capability allows
augmenting/modifying runtime behavior
• Add missing features, validate correctness, trace, profile, etc

• OpenCL SDK serves as a „one-stop shop” for devs
• Initial batch of native samples & utilities awarded to Stream

• Coming to a GitHub near you

• Defines the semantics of layered implementations to
fill in the gaps of platform support
• Most notably OpenCLOn12, enabling OpenCL across the

entire Windows ecosystem, regardless of vendor support.

OPENCL 3.0 ECOSYSTEM
REBOOT

07/05/2022 GPU-Day 2022 – Budapest, Hungary 5

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

https://www.microsoft.com/en-us/p/opencl-and-opengl-compatibility-pack/9nqpsl29bfff

https://github.com/KhronosGroup/OpenCL-SDK
https://github.com/microsoft/OpenCLOn12

STREA
M
High Performance
Computing

• New ICD Layers capability allows
augmenting/modifying runtime behavior
• Add missing features, validate correctness, trace, profile, etc

• OpenCL SDK serves as a „one-stop shop” for devs
• Initial batch of native samples & utilities awarded to Stream

• Coming to a GitHub near you

• Defines the semantics of layered implementations to
fill in the gaps of platform support
• Most notably OpenCLOn12, enabling OpenCL across the

entire Windows ecosystem, regardless of vendor support.

OPENCL 3.0 ECOSYSTEM
REBOOT

07/05/2022 GPU-Day 2022 – Budapest, Hungary 6

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

https://www.microsoft.com/en-us/p/opencl-and-opengl-compatibility-pack/9nqpsl29bfff

https://github.com/KhronosGroup/OpenCL-SDK
https://github.com/microsoft/OpenCLOn12

STREA
M
High Performance
Computing

• OpenCL-Headers
• OpenCL-ICD-Loader
• OpenCL-CLHPP
• Utility libraries
• Sample codes
• Documentation
• OpenCL-Guide

WHAT’S INSIDE THE BOX?

07/05/2022 GPU-Day 2022 – Budapest, Hungary 7

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

STREA
M
High Performance
Computing

• OpenCL-Headers
• OpenCL-ICD-Loader
• OpenCL-CLHPP
• Utility libraries
• Sample codes
• Documentation
• OpenCL-Guide

• The definitive C bindings to the OpenCL API

• Relatively new helper headers for

• Creating your own ICD
• Creating your own layer

WHAT’S INSIDE THE BOX?

07/05/2022 GPU-Day 2022 – Budapest, Hungary 8

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

STREA
M
High Performance
Computing

• OpenCL-Headers
• OpenCL-ICD-Loader
• OpenCL-CLHPP
• Utility libraries
• Sample codes
• Documentation
• OpenCL-Guide

• The canonical Installable Client Driver loader

• libOpenCL.so/OpenCL.dll
• Responsible for loading vendor runtimes

• Shared ownership by vendors and OS

• Exposed to

• Let users tap into latest
features
• Help implementers debug

WHAT’S INSIDE THE BOX?

07/05/2022 GPU-Day 2022 – Budapest, Hungary 9

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

clGetPlatformIDs(numPlatforms, platforms,
NULL);

STREA
M
High Performance
Computing

• OpenCL-Headers
• OpenCL-ICD-Loader
• OpenCL-CLHPP
• Utility libraries
• Sample codes
• Documentation
• OpenCL-Guide

• Canonical C++ bindings to the OpenCL API

• Reduces verbosity
• Adds safety guards

• C++11 is the minimum

WHAT’S INSIDE THE BOX?

07/05/2022 GPU-Day 2022 – Budapest, Hungary 10

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

STREA
M
High Performance
Computing

• OpenCL-Headers
• OpenCL-ICD-Loader
• OpenCL-CLHPP
• Utility libraries
• Sample codes
• Documentation
• OpenCL-Guide

• Utility libraries to help developers with common tasks, for
eg.

• Give me a context with
device N on platform M
• Obtain profiling data in

std::chrono-friendly format
• Contributions are welcome

• Convert error code -48 to
„CL_INVALID_KERNEL”?

WHAT’S INSIDE THE BOX?

07/05/2022 GPU-Day 2022 – Budapest, Hungary 11

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

STREA
M
High Performance
Computing

• OpenCL-Headers
• OpenCL-ICD-Loader
• OpenCL-CLHPP
• Utility libraries
• Sample codes
• Documentation
• OpenCL-Guide

WHAT’S INSIDE THE BOX?

07/05/2022 GPU-Day 2022 – Budapest, Hungary 12

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

STREA
M
High Performance
Computing

• OpenCL-Headers
• OpenCL-ICD-Loader
• OpenCL-CLHPP
• Utility libraries
• Sample codes
• Documentation
• OpenCL-Guide

WHAT’S INSIDE THE BOX?

07/05/2022 GPU-Day 2022 – Budapest, Hungary 13

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

STREA
M
High Performance
Computing

• OpenCL-Headers
• OpenCL-ICD-Loader
• OpenCL-CLHPP
• Utility libraries
• Sample codes
• Documentation
• OpenCL-Guide

• All documentation is written in Markdown

• Cross-linking with the OpenCL-Guide

• Getting started guides
• Linux
• Windows

• CMake support
• More on this later

WHAT’S INSIDE THE BOX?

07/05/2022 GPU-Day 2022 – Budapest, Hungary 14

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

STREA
M
High Performance
Computing

• The entire ecosystem is thoroughly tested
• Warning free using highest warn levels

• 3 platforms (Windows, Linux, MacOS)
• 3 compilers (MSVC, GCC, Clang)
• Multiple language C/C++ standards
• With/without compiler extensions

• Public facing CI scripts

HIGHER STANDARDS

07/05/2022 GPU-Day 2022 – Budapest, Hungary 15

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

STREA
M
High Performance
Computing

• The entire ecosystem is thoroughly tested
• Warning free using highest warn levels

• 3 platforms (Windows, Linux, MacOS)
• 3 compilers (MSVC, GCC, Clang)
• Multiple language C/C++ standards
• With/without compiler extensions

• Public facing CI scripts

• Continuous Deployment in place
• Quarterly source & binary releases

HIGHER STANDARDS

07/05/2022 GPU-Day 2022 – Budapest, Hungary 16

1
S

T
 P

A
R

T
Y

O

P
E
N

C
L
-S

D
K

LAYERS ARE KEY
- Ogres are like onions.

- They smell and turn white if you leave them on the sun?

- No Donkey! They got layers!

07/05/2022 GPU-Day 2022 – Budapest, Hungary 17

STREA
M
High Performance
Computing

• New ICD Layers capability allows
augmenting/modifying runtime behavior
• Add missing features, validate correctness, trace, profile, etc

• OpenCL SDK serves as a „one-stop shop” for devs
• Initial batch of native samples & utilities awarded to Stream

• Coming to a GitHub near you

• Defines the semantics of layered implementations to
fill in the gaps of platform support
• Most notably OpenCLOn12, enabling OpenCL across the

entire Windows ecosystem, regardless of vendor support.

OPENCL 3.0 ECOSYSTEM
REBOOT

07/05/2022 GPU-Day 2022 – Budapest, Hungary 18

L
A
Y

E
R

S
 A

R
E

K
E
Y

https://www.microsoft.com/en-us/p/opencl-and-opengl-compatibility-pack/9nqpsl29bfff

https://github.com/KhronosGroup/OpenCL-SDK
https://github.com/microsoft/OpenCLOn12

STREA
M
High Performance
Computing

• New ICD Layers capability allows
augmenting/modifying runtime behavior
• Add missing features, validate correctness, trace, profile, etc

• OpenCL SDK serves as a „one-stop shop” for devs
• Initial batch of native samples & utilities awarded to Stream

• Coming to a GitHub near you

• Defines the semantics of layered implementations to
fill in the gaps of platform support
• Most notably OpenCLOn12, enabling OpenCL across the

entire Windows ecosystem, regardless of vendor support.

OPENCL 3.0 ECOSYSTEM
REBOOT

07/05/2022 GPU-Day 2022 – Budapest, Hungary 19

L
A
Y

E
R

S
 A

R
E

K
E
Y

https://www.microsoft.com/en-us/p/opencl-and-opengl-compatibility-pack/9nqpsl29bfff

https://github.com/KhronosGroup/OpenCL-SDK
https://github.com/microsoft/OpenCLOn12

STREA
M
High Performance
Computing

• Without layers support enabled, the ICD Loader will
• dispatch the call to the correct vendor driver

UNDERSTANDING LAYERS

07/05/2022 GPU-Day 2022 – Budapest, Hungary 20

L
A
Y

E
R

S
 A

R
E

K
E
YApplication

ICD Loader
Driver 1

Driver 2

Function 1

Function 2

Layers for OpenCL – Brice Videau @ IWOCL 2021
(https://raw.githubusercontent.com/Kerilk/OpenCL-Layers-Tutorial/main/presentation/LayersForOpenCL.pdf)

STREA
M
High Performance
Computing

• With layers support enabled, the ICD Loader will
• first redirect calls to different active layers
• then dispatch the call to the correct vendor driver

UNDERSTANDING LAYERS

07/05/2022 GPU-Day 2022 – Budapest, Hungary 21

L
A
Y

E
R

S
 A

R
E

K
E
YApplication

ICD Loader
Driver 1

Driver 2

Function 1

Function 2

ICD Loader

Function 2

ICD Loader

Function 1

Function 2

STREA
M
High Performance
Computing

• Leaking objects

OBJECT LIFETIME TRACKING

07/05/2022 GPU-Day 2022 – Budapest, Hungary 22

L
A
Y

E
R

S
 A

R
E

K
E
Y

clReleaseEvent(evt[0]);
clReleaseEvent(evt[1]);
clReleaseMemObject(bufferSrc);
clReleaseMemObject(bufferDst);
clReleaseMemObject(bufferRes);
clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseCommandQueue(queue);
clReleaseContext(context);
clReleaseDevice(device);

STREA
M
High Performance
Computing

• Leaking objects

OBJECT LIFETIME TRACKING

07/05/2022 GPU-Day 2022 – Budapest, Hungary 23

L
A
Y

E
R

S
 A

R
E

K
E
Y

cl_ulong total_time = 0;
for (int i = 0 ; i < steps ; ++i)
{
 cl_event event;
 clEqneueNDRandeKernel(
 queue, kernel, 1, NULL,
 &global_work_size, &local_work_size,
 0, NULL, &event);
 clGetEventProfilingInfo(
 event, CL_PROFILING_COMMAND_START,
 sizeof(cl_ulong), &start, NULL);
 clGetEventProfilingInfo(
 event, CL_PROFILING_COMMAND_END,
 sizeof(cl_ulong), &end, NULL);
 total_time += end – start;

}

STREA
M
High Performance
Computing

• Leaking objects

OBJECT LIFETIME TRACKING

07/05/2022 GPU-Day 2022 – Budapest, Hungary 24

L
A
Y

E
R

S
 A

R
E

K
E
Y

cl_ulong total_time = 0;
for (int i = 0 ; i < steps ; ++i)
{
 cl_event event;
 clEqneueNDRandeKernel(
 queue, kernel, 1, NULL,
 &global_work_size, &local_work_size,
 0, NULL, &event);
 clGetEventProfilingInfo(
 event, CL_PROFILING_COMMAND_START,
 sizeof(cl_ulong), &start, NULL);
 clGetEventProfilingInfo(
 event, CL_PROFILING_COMMAND_END,
 sizeof(cl_ulong), &end, NULL);
 total_time += end – start;
 clReleaseEvent(event);
}

STREA
M
High Performance
Computing

• Leaking objects
• Double free
• Shortcircuit an option

OBJECT LIFETIME TRACKING

07/05/2022 GPU-Day 2022 – Budapest, Hungary 25

L
A
Y

E
R

S
 A

R
E

K
E
Y

cl_context ctx_a = clCreateContext(...);
clReleaseContext(ctx_a);
// Do a whole bunch of other stuff
/*
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
*/
clReleaseContext(ctx_a);

STREA
M
High Performance
Computing

• Leaking objects
• Double free
• Shortcircuit an option

• Use after free

OBJECT LIFETIME TRACKING

07/05/2022 GPU-Day 2022 – Budapest, Hungary 26

L
A
Y

E
R

S
 A

R
E

K
E
Y

cl_context ctx_a = clCreateContext(...);
clReleaseContext(ctx_a);
// Do a whole bunch of other stuff
/*
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
*/
clGetContextInfo(ctx_a,
CL_CONTEXT_DEVICES,
 0, NULL, &devices_size);

STREA
M
High Performance
Computing

• Leaking objects
• Double free
• Shortcircuit an option

• Use after free
• Use of dangling handle

OBJECT LIFETIME TRACKING

07/05/2022 GPU-Day 2022 – Budapest, Hungary 27

L
A
Y

E
R

S
 A

R
E

K
E
Y

cl_context ctx_a = clCreateContext(...);
clReleaseContext(ctx_a);

cl_context ctx_b = clCreateContext(...);
clReleaseContext(ctx_a);

STREA
M
High Performance
Computing

• Leaking objects
• Double free
• Shortcircuit an option

• Use after free
• Use of dangling handle

• Needs a dictionary
between ICD and user
code

• Translate whenever the
user uses a handle

OBJECT LIFETIME TRACKING

07/05/2022 GPU-Day 2022 – Budapest, Hungary 28

L
A
Y

E
R

S
 A

R
E

K
E
Y

cl_context ctx_a = clCreateContext(...);
clReleaseContext(ctx_a);

cl_context ctx_b = clCreateContext(...);
clReleaseContext(ctx_a);

STREA
M
High Performance
Computing

• API entry points have various pre/post-conditions users
ought not violate
• If conditions are violated, an error is raised
• Worst case scenario, the app crashes

• There are (core + extension) functions
• Writing checks for each is a lot of work
• That work has to be done for every language projection

• C, C++, C# (OpenCL.Net), Python (PyOpenCL), etc

• Can we do better?

INPUT ARGUMENT VALIDATION

07/05/2022 GPU-Day 2022 – Budapest, Hungary 29

L
A
Y

E
R

S
 A

R
E

K
E
Y

STREA
M
High Performance
Computing

• command_queue is a valid host command-queue in which the read / write command will be queued.
command_queue and buffer must be created with the same OpenCL context.
• buffer refers to a valid buffer object.
• blocking_read and blocking_write indicate if the read and write operations are blocking or non-blocking (see

below).
• offset is the offset in bytes in the buffer object to read from or write to.
• size is the size in bytes of data being read or written.
• ptr is the pointer to buffer in host memory where data is to be read into or to be written from.
• event_wait_list and num_events_in_wait_list specify events that need to complete before this particular command

can be executed. If event_wait_list is NULL, then this particular command does not wait on any event to complete.
If event_wait_list is NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL, the list of events
pointed to by event_wait_list must be valid and num_events_in_wait_list must be greater than 0. The events
specified in event_wait_list act as synchronization points. The context associated with events in event_wait_list
and command_queue must be the same. The memory associated with event_wait_list can be reused or freed after
the function returns.
• event returns an event object that identifies this read / write command and can be used to query or queue a wait

for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be created and
therefore it will not be possible to query the status of this command or to wait for this command to complete. If
event_wait_list and event are not NULL, event must not refer to an element of the event_wait_list array.

INPUT ARGUMENT VALIDATION

07/05/2022 GPU-Day 2022 – Budapest, Hungary 30

L
A
Y

E
R

S
 A

R
E

K
E
Y

cl_int clEnqueueWriteBuffer(cl_command_queue command_queue, cl_mem
buffer,
 cl_bool blocking_write, size_t offset, size_t size, const void* ptr,
 cl_uint num_events_in_wait_list, const cl_event* event_wait_list,
 cl_event* event);

STREA
M
High Performance
Computing

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.
• CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same or if the context

associated with command_queue and events in event_wait_list are not the same.
• CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.
• CL_INVALID_VALUE if the region being read or written specified by (offset, size) is out of bounds or if ptr is a NULL value.
• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or event_wait_list is not NULL

and num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.
• CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the sub-buffer object is

created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue. This error code is
missing before version 1.1.
• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write operations are blocking and the execution

status of any of the events in event_wait_list is a negative integer value. This error code is missing before version 1.1.
• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store associated with buffer.
• CL_INVALID_OPERATION if clEnqueueReadBuffer is called on buffer which has been created with

CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.
• CL_INVALID_OPERATION if clEnqueueWriteBuffer is called on buffer which has been created with

CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.
• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL implementation on the device.
• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL implementation on the host.

INPUT ARGUMENT VALIDATION

07/05/2022 GPU-Day 2022 – Budapest, Hungary 31

L
A
Y

E
R

S
 A

R
E

K
E
Y

cl_int clEnqueueWriteBuffer(cl_command_queue command_queue, cl_mem
buffer,
 cl_bool blocking_write, size_t offset, size_t size, const void* ptr,
 cl_uint num_events_in_wait_list, const cl_event* event_wait_list,
 cl_event* event);

STREA
M
High Performance
Computing

Before input arg validation

GENERATE CHECKS FROM XML

07/05/2022 GPU-Day 2022 – Budapest, Hungary 32

L
A
Y

E
R

S
 A

R
E

K
E
Y

<command
suffix="CL_API_SUFFIX__VERSION_1_2
">
 <proto>
 <type>cl_int</type>
 <name>clReleaseDevice</name>
 </proto>
 <param>
 <type>cl_device_id</type>
 <name>device</name>
 </param>
</command>

STREA
M
High Performance
Computing

Before input arg validation After input arg validation

GENERATE CHECKS FROM XML

07/05/2022 GPU-Day 2022 – Budapest, Hungary 33

L
A
Y

E
R

S
 A

R
E

K
E
Y

<command
suffix="CL_API_SUFFIX__VERSION_1_2
">
 <proto>
 <type>cl_int</type>
 <name>clReleaseDevice</name>
 </proto>
 <param>
 <type>cl_device_id</type>
 <name>device</name>
 </param>
</command>

<command
suffix="CL_API_SUFFIX__VERSION_1_2

">
 <proto>

 <type>cl_int</type>
 <name>clReleaseDevice</name>

 </proto>
 <param>

 <type>cl_device_id</type>
 <name>device</name>

 </param>
<if>

 <object_is_invalid
name="device"/>

</if><then>
 <log>device is not a valid

device
 </log>

 <name>clReleaseDevice</name>
 <value>CL_INVALID_DEVICE</value>

</then>
</command>

IN ACTUAL NEWS
What happens in OpenCL land?

07/05/2022 GPU-Day 2022 – Budapest, Hungary 34

STREA
M
High Performance
Computing

• Popular database of
GPU capabilities
• Suports
• OpenGL, Vulkan, OpenGL

ES and now OpenCL!
• Windows, Linux, Android

• Invaluable if you wish
to
• check the capabilities of

a device you don’t own
• gauge portability when

depending on a
feature/extension

OPENCL ON GPUINFO

07/05/2022 GPU-Day 2022 – Budapest, Hungary 35

IN
 A

C
T
U

A
L

N
E
W

S

https://opencl.gpuinfo.org/

https://opencl.gpuinfo.org/

STREA
M
High Performance
Computing

• Kévin Petit has done some awesome work by releasing
a SPIR-V to OpenCL C transpiler
• Calling it disassembling would be a mild overstatement
• „If you squint really, you can see the SPIR-V”

SPIRV2CLC

07/05/2022 GPU-Day 2022 – Budapest, Hungary 36

IN
 A

C
T
U

A
L

N
E
W

S

STREA
M
High Performance
Computing

• Kévin Petit has done some
awesome work by releasing
a SPIR-V to OpenCL C
transpiler
• Calling it disassembling would

be a mild overstatement
• „If you squint really, you can

see the SPIR-V”

SPIRV2CLC

07/05/2022 GPU-Day 2022 – Budapest, Hungary 37

IN
 A

C
T
U

A
L

N
E
W

S

kernel void saxpy(
 float a,
 global float* x,
 global float* y)
{
 int gid = get_global_id(0);
 y[gid] = a * x[gid] + y[gid];
}

kernel void saxpy(float v20, float global* v21, float global* v22){
v23:;
 float __attribute__((aligned(4))) v5_storage; float * v5 =
&v5_storage;
 float global* __attribute__((aligned(8))) v6_storage; float global*
* v6 = &v6_storage;
 float global* __attribute__((aligned(8))) v7_storage; float global*
* v7 = &v7_storage;
 uint __attribute__((aligned(4))) v8_storage; uint * v8 =
&v8_storage;
 *v5 = v20;
 *v6 = v21;
 *v7 = v22;
 ulong v25 = get_global_id(0);
 uint v26 = convert_uint(v25);
 *v8 = v26;
 float v27 = *v5;
 float global* v28 = *v6;
 uint v29 = *v8;
 ulong v30 = convert_long(as_int(v29));
 float global* v31 = &v28[v30];
 float v32 = *v31;
 float global* v33 = *v7;
 uint v34 = *v8;
 ulong v35 = convert_long(as_int(v34));
 float global* v36 = &v33[v35];
 float v37 = *v36;
 float v38 = mad(v27, v32, v37);
 float global* v39 = *v7;
 uint v40 = *v8;
 ulong v41 = convert_long(as_int(v40));
 float global* v42 = &v39[v41];
 *v42 = v38;
 return;
}

STREA
M
High Performance
Computing

STANDARD PORTABLE IR

07/05/2022 GPU-Day 2022 – Budapest, Hungary 38

IN
 A

C
T
U

A
L

N
E
W

S
• It is the PTX of OpenCL
• Was born out of necessity of vendors wanting to

obfuscate proprietary kernel code
• The API at some point needs device code as an unencrypted

stream of ASCII char array (easy to hijack)
• Also soves some vendor compiler non-conformance issues

• SPIR turned out to be possibly the biggest mistake
OpenCL has ever made
• A mistake to be repeated by Microsoft with DXIL

• SPIR-V saves the day („V” stands for Vulkan, not 5)
• Vulkan needed an IR badly
• New IR is adopted by both OpenCL and OpenGL

STREA
M
High Performance
Computing

STANDARD PORTABLE IR

07/05/2022 GPU-Day 2022 – Budapest, Hungary 39

IN
 A

C
T
U

A
L

N
E
W

S
• It is the PTX of OpenCL

Aspect SPIR 1.2 SPIR 2.0 SPIR-V 1.X

LLVM Interaction Uses LLVM 3.2 Uses LLVM 3.4
100% Khronos defined

Round-trip lossless
conversion

Compute Constructs Metadata/Intrinsics Metadata/Intrinsics Native

Graphics Construct No No Native

Supported Language
Feature Supported

OpenCL C 1.2
OpenCL C 1.2
OpenCL C 2.0

OpenCL C 1.2 / 2.X
C++ for OpenCL

GLSL

OpenCL Ingestion OpenCL 1.2 Extension OpenCL 2.0 Extension
OpenCL 2.1/2.2 Core
OpenCL 3.0 Extension

Graphics API Ingestion - - Vulkan 1.X
OpenGL 4.6 Core

Source: https://www.khronos.org/spir/

https://www.khronos.org/spir/

STREA
M
High Performance
Computing

STANDARD PORTABLE IR

07/05/2022 GPU-Day 2022 – Budapest, Hungary 40

IN
 A

C
T
U

A
L

N
E
W

S
• It is the PTX of OpenCL

Aspect SPIR 1.2 SPIR 2.0 SPIR-V 1.X

LLVM Interaction Uses LLVM 3.2 Uses LLVM 3.4
100% Khronos defined

Round-trip lossless
conversion

Compute Constructs Metadata/Intrinsics Metadata/Intrinsics Native

Graphics Construct No No Native

Supported Language
Feature Supported

OpenCL C 1.2
OpenCL C 1.2
OpenCL C 2.0

OpenCL C 1.2 / 2.X
C++ for OpenCL

GLSL

OpenCL Ingestion OpenCL 1.2 Extension OpenCL 2.0 Extension
OpenCL 2.1/2.2 Core
OpenCL 3.0 Extension

Graphics API Ingestion - - Vulkan 1.X
OpenGL 4.6 Core

Source: https://www.khronos.org/spir/

https://www.khronos.org/spir/

STREA
M
High Performance
Computing

SPIR-V FOR GRAPHICS

• 100% Khronos defined

• Bi-directionally translatable to/from LLVM

• Can represent any shading language

• Rich, open-source tooling

SPIR-V FOR COMPUTE

• Everything SPIR-V for graphics does and more

• Unstructured control-flow
• Pointer arithmetic

• Optimizer looks very different

• Both extensions can be transformed away

• Lots of optimizer work
• Done in Mesa

• OpenCLOn12, clvk

STANDARD PORTABLE IR

07/05/2022 GPU-Day 2022 – Budapest, Hungary 41

IN
 A

C
T
U

A
L

N
E
W

S

STREA
M
High Performance
Computing

• SPIR-V is a crucial, yet notoriously non-portable feature
• It’s one of the reasons why Vulkan is such a huge success
• Tooling around SPIR-V is thriving
• Greatly improves portability of shaders and tooling

• On desktop, AMD and Nvidia still don’t ship SPIR-V
compilers for OpenCL
• Even OpenCLOn12 supports it
• cl_khr_il_program is the extension to look for

• Can we teach runtimes that don’t support SPIR-V
ingestion to somehow… compile them?
• I thought you’d never ask

THE STATE OF SPIR-V

07/05/2022 GPU-Day 2022 – Budapest, Hungary 42

IN
 A

C
T
U

A
L

N
E
W

S

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#cl_khr_il_program

STREA
M
High Performance
Computing

• Are you thinking what I’m thinking? Layers!
• Nothing prevents a layer from calling into a different

API function than the one being called.

SPIR-V FOR THE MASSES

07/05/2022 GPU-Day 2022 – Budapest, Hungary 43

IN
 A

C
T
U

A
L

N
E
W

SApplication

ICD Loader
Driver 1

Driver 2

Function 1

Function 2

Layer 1

Function 2

Layer 2

Function 1

Function 2

STREA
M
High Performance
Computing

• Are you thinking what I’m thinking? Layers!
• Nothing prevents a layer from calling into a different

API function than the one being called.

SPIR-V FOR THE MASSES

07/05/2022 GPU-Day 2022 – Budapest, Hungary 44

IN
 A

C
T
U

A
L

N
E
W

SApplication

ICD Loader
Driver 1

Driver 2

clCreateProgramWithIL

clCreateProgramWithSource

Layer 1

clCreateProgramWithIL

STREA
M
High Performance
Computing

• Language built on top of OpenCL C 3.0 unified and C+
+17 enabling most of regular C++ features in OpenCL
kernel code.
• List of restricted C++ features are the same as always

• Virtual functions, dynamic_cast, refs to func, ptr to member func, RTTI,
exceptions, thread_local, non-placement new/delete, STL

• Upstream LLVM 14 with experimental support
• Need to compile kernels offline
• Load IL as binary and feed to clCreateProgramWithIL

• cl_ext_cxx_for_opencl allows online compilation

C++ FOR OPENCL

07/05/2022 GPU-Day 2022 – Budapest, Hungary 45

IN
 A

C
T
U

A
L

N
E
W

Sclang -cl-std=CLC++2021
kernel.clcpp

std::ifstream binary{ location, std::ios::binary };
cl::Program prog{ ctx, std::vector{ std::istreambuf_iterator<char>{ binary
},
 std::istreambuf_iterator<char>{} } };
prog.build({ device });

STREA
M
High Performance
Computing

• Language built on top of OpenCL C 3.0 unified and C+
+17 enabling most of regular C++ features in OpenCL
kernel code.
• List of restricted C++ features are the same as always

• Virtual functions, dynamic_cast, refs to func, ptr to member func, RTTI,
exceptions, thread_local, non-placement new/delete, STL

• Upstream LLVM 14 with experimental support
• Need to compile kernels offline
• Load IL as binary and feed to clCreateProgramWithIL

• cl_ext_cxx_for_opencl allows online compilation

C++ FOR OPENCL

07/05/2022 GPU-Day 2022 – Budapest, Hungary 46

IN
 A

C
T
U

A
L

N
E
W

Sclang -cl-std=CLC++2021
kernel.clcpp

std::ifstream binary{ location, std::ios::binary };
cl::Program prog{ ctx, std::vector{ std::istreambuf_iterator<char>{ binary
},
 std::istreambuf_iterator<char>{} } };
prog.build({ device });

WE’RE HIRING
https://streamhpc.com/jobs/

07/05/2022 GPU-Day 2022 – Budapest, Hungary 47

	Slide 1
	TABLE OF CONTENTS
	1ST PARTY OPENCL-SDK
	OPENCL 3.0
	OPENCL 3.0 ECOSYSTEM REBOOT
	OPENCL 3.0 ECOSYSTEM REBOOT
	WHAT’S INSIDE THE BOX?
	WHAT’S INSIDE THE BOX?
	WHAT’S INSIDE THE BOX?
	WHAT’S INSIDE THE BOX?
	WHAT’S INSIDE THE BOX?
	WHAT’S INSIDE THE BOX?
	WHAT’S INSIDE THE BOX?
	WHAT’S INSIDE THE BOX?
	HIGHER STANDARDS
	HIGHER STANDARDS
	LAYERS ARE KEY
	OPENCL 3.0 ECOSYSTEM REBOOT
	OPENCL 3.0 ECOSYSTEM REBOOT
	UNDERSTANDING LAYERS
	UNDERSTANDING LAYERS
	OBJECT LIFETIME TRACKING
	OBJECT LIFETIME TRACKING
	OBJECT LIFETIME TRACKING
	OBJECT LIFETIME TRACKING
	OBJECT LIFETIME TRACKING
	OBJECT LIFETIME TRACKING
	OBJECT LIFETIME TRACKING
	INPUT ARGUMENT VALIDATION
	INPUT ARGUMENT VALIDATION
	INPUT ARGUMENT VALIDATION
	GENERATE CHECKS FROM XML
	GENERATE CHECKS FROM XML
	IN ACTUAL NEWS
	OPENCL ON GPUINFO
	SPIRV2CLC
	SPIRV2CLC
	STANDARD PORTABLE IR
	STANDARD PORTABLE IR
	STANDARD PORTABLE IR
	STANDARD PORTABLE IR
	THE STATE OF SPIR-V
	SPIR-V FOR THE MASSES
	SPIR-V FOR THE MASSES
	C++ FOR OPENCL
	C++ FOR OPENCL
	WE’RE HIRING

